Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.190
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338936

RESUMO

Traumatic brain injury (TBI) is a major cause of mortality and disability around the world, for which no treatment has been found. Nociceptin/Orphanin FQ (N/OFQ) and the nociceptin opioid peptide (NOP) receptor are rapidly increased in response to fluid percussion, stab injury, and controlled cortical impact (CCI) TBI. TBI-induced upregulation of N/OFQ contributes to cerebrovascular impairment, increased excitotoxicity, and neurobehavioral deficits. Our objective was to identify changes in N/OFQ and NOP receptor peptide, protein, and mRNA relative to the expression of injury markers and extracellular regulated kinase (ERK) 24 h following mild (mTBI) and moderate TBI (ModTBI) in wildtype (WT) and NOP receptor-knockout (KO) rats. N/OFQ was quantified by radioimmunoassay, mRNA expression was assessed using real-time PCR and protein levels were determined by immunoblot analysis. This study revealed increased N/OFQ mRNA and peptide levels in the CSF and ipsilateral tissue of WT, but not KO, rats 24 h post-TBI; NOP receptor mRNA increased after ModTBI. Cofilin-1 activation increased in the brain tissue of WT but not KO rats, ERK activation increased in all rats following ModTBI; no changes in injury marker levels were noted in brain tissue at this time. In conclusion, this study elucidates transcriptional and translational changes in the N/OFQ-NOP receptor system relative to TBI-induced neurological deficits and initiation of signaling cascades that support the investigation of the NOP receptor as a therapeutic target for TBI.


Assuntos
Lesões Encefálicas Traumáticas , Receptor de Nociceptina , 60620 , Animais , Ratos , Analgésicos Opioides , Lesões Encefálicas Traumáticas/genética , Peptídeos Opioides/metabolismo , Receptores Opioides/metabolismo , RNA Mensageiro/metabolismo
2.
Behav Brain Res ; 462: 114895, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38316167

RESUMO

The nucleus accumbens (NAc) is a critical region for regulating the appetitive and consummatory aspects of motivated behavior. Previous work has shown differential effects of NAc µ-, δ-, and κ- receptor stimulation on food intake and for shifting motivation within an effort-based choice (EBC) task. However, the motivational role of the nociceptin opioid peptide (NOP) receptor, a fourth member of the opioid receptor family, is less well understood. These experiments therefore characterized the effect of NAc injections of nociceptin, the endogenous ligand for the NOP receptor, on consummatory and appetitive motivation. Three groups of male Sprague-Dawley rats received nociceptin injections into the NAc core prior to testing in a progressive ratio lever pressing task, an EBC task, or a palatable feeding assay. In the feeding experiment, 10 nmol of nociceptin increased consumption in the first 30 min, but this increase was not sustained through the end of the 2-hr session. Additionally, nociceptin injections did not alter breakpoint in the progressive ratio task. However, in the EBC task, nociceptin significantly decreased breakpoint for sugar pellets without affecting consumption of rat chow. These data suggest that NAc NOP receptor stimulation transiently increases consummatory motivation toward palatable diets and inhibits appetitive motivation when alternate food options are freely available. This pattern of effects contrasts with those obtained following NAc stimulation of other opioid receptors, suggesting that the four opioid receptor classes each serve unique roles in modulating food-directed motivation within the NAc core.


Assuntos
Comportamento Alimentar , Motivação , 60620 , Núcleo Accumbens , Animais , Masculino , Ratos , 60620/metabolismo , Receptor de Nociceptina , Peptídeos Opioides/metabolismo , Ratos Sprague-Dawley , Receptores Opioides/metabolismo
3.
Fish Physiol Biochem ; 50(2): 733-743, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38277042

RESUMO

Although the involvement of ß-endorphin (ß-ERP) in vertebrate reproduction has been suggested, its role in testicular activity is not clear in fish. We describe the influence of ß-ERP on spermatogenesis in a cichlid fish in the present paper. In comparison to the control group, the administration of ß-ERP (3 µg) caused a significant increase in the number of spermatogonia-A and spermatids. Following treatment with ß-ERP (6 µg), a significant increase in the number of spermatogonia-A was observed, whereas the numbers of all the other germ cells, excluding spermatogonia-B, significantly decreased in comparison to those in the control group. In addition, treatment of fish with 6 µg ß-ERP resulted in a significant reduction in the dimensions of the lumen and seminiferous lobules, the level of immunopositive androgen receptor (AR) expression in Sertoli cells, and the percentage of luteinizing hormone (LH) immunolabeled in the pituitary compared to those in the control group or the group treated with 3 µg ß-ERP. In contrast, the intensity of AR immunoreactivity and the percentage of LH immunolabeling were substantially increased in fish treated with 3 µg ß-ERP compared to those in the control group. These findings reveal for the first time that a low dose of ß-ERP stimulates the recruitment of spermatogonia as well as spermateleosis, whereas a high concentration affects the recruitment of germ cells prior to meiotic division in tilapia. These results suggest that ß-ERP exerts modulatory effects at the testicular and hypophysial levels through alterations in AR expression and LH secretory activity, respectively, in teleosts.


Assuntos
Testículo , Tilápia , Masculino , Animais , Testículo/metabolismo , Tilápia/metabolismo , beta-Endorfina/metabolismo , beta-Endorfina/farmacologia , Peptídeos Opioides/metabolismo , Peptídeos Opioides/farmacologia , Espermatogênese , Hormônio Luteinizante/metabolismo , Espermatogônias
4.
Psychopharmacology (Berl) ; 241(5): 1001-1010, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270614

RESUMO

RATIONALE: Recently, we demonstrated that the activation of the nociceptin/orphanin FQ (N/OFQ) receptor (NOP) signaling facilitates depressive-like behaviors. Additionally, literature findings support the ability of the N/OFQ-NOP system to modulate the hypothalamic-pituitary-adrenal (HPA) axis. OBJECTIVES: Considering that dysfunctional HPA axis is strictly related to stress-induced psychopathologies, we aimed to study the role of the HPA axis in the pro-depressant effects of NOP agonists. METHODS: Mice were treated prior to stress with the NOP agonist Ro 65-6570, and immobility time in the forced swimming task and corticosterone levels were measured. Additionally, the role of endogenous glucocorticoids and CRF was investigated using the glucocorticoid receptor antagonist mifepristone and the CRF1 antagonist antalarmin in the mediation of the effects of Ro 65-6570. RESULTS: The NOP agonist in a dose-dependent manner further increased the immobility of mice in the second swimming session compared to vehicle. By contrast, under the same conditions, the administration of the NOP antagonist SB-612111 before stress reduced immobility, while the antidepressant nortriptyline was inactive. Concerning in-serum corticosterone in mice treated with vehicle, nortriptyline, or SB-612111, a significant decrease was observed after re-exposition to stress, but no differences were detected in Ro 65-6570-treated mice. Administration of mifepristone or antalarmin blocked the Ro 65-6570-induced increase in the immobility time in the second swimming session. CONCLUSIONS: Present findings suggest that NOP agonists increase vulnerability to depression by hyperactivating the HPA axis and then increasing stress circulating hormones and CRF1 receptor signaling.


Assuntos
Cicloeptanos , Imidazóis , Peptídeos Opioides , Piperidinas , Receptores Opioides , Compostos de Espiro , Camundongos , Animais , Receptores Opioides/fisiologia , Peptídeos Opioides/metabolismo , Glucocorticoides/farmacologia , Nortriptilina/farmacologia , Receptor de Nociceptina , Corticosterona/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Mifepristona/farmacologia , Sistema Hipófise-Suprarrenal/metabolismo
5.
Cells ; 12(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37408230

RESUMO

Endometriosis (EM) is a chronic inflammatory disease affecting millions of women worldwide. Chronic pelvic pain is one of the main problems of this condition, leading to quality-of-life impairment. Currently, available treatment options are not able to treat these women accurately. A better understanding of the pain mechanisms would be beneficial to integrate additional therapeutic management strategies, especially specific analgesic options. To understand pain in more detail, nociceptin/orphanin FQ peptide (NOP) receptor expression was analyzed in EM-associated nerve fibers (NFs) for the first time. Laparoscopically excised peritoneal samples from 94 symptomatic women (73 with EM and 21 controls) were immunohistochemically stained for NOP, protein gene product 9.5 (PGP9.5), substance P (SP), calcitonin gene-related peptide (CGRP), tyrosine hydroxylase (TH), and vasoactive intestinal peptide (VIP). Peritoneal NFs of EM patients and healthy controls were positive for NOP and often colocalized with SP-, CGRP-, TH-, and VIP-positive nerve fibers, suggesting that NOP is expressed in sensory and autonomic nerve fibers. In addition, NOP expression was increased in EM associate NF. Our findings highlight the potential of NOP agonists, particularly in chronic EM-associated pain syndromes and deserve further study, as the efficacy of NOP-selective agonists in clinical trials.


Assuntos
Dor Crônica , Endometriose , Humanos , Feminino , Receptores Opioides/metabolismo , Receptor de Nociceptina , Endometriose/tratamento farmacológico , Peptídeo Relacionado com Gene de Calcitonina , Peptídeos Opioides/metabolismo , Fibras Nervosas
6.
Behav Brain Res ; 446: 114333, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-36764486

RESUMO

Social interaction is necessary for the development of individuals and society. Social interaction behaviors are rewarding. Similar to exogenous opioids, social interaction behaviors are able to induce rewarding effects that are regulated by the endogenous opioid system as well. As one type of opioid receptor, µ-opioid receptors (MORs), are densely expressed in the rostromedial tegmental nucleus (RMTg), which results in the RMTg being extremely sensitive to rewarding effects induced by exogenous and endogenous opioids. Here, we investigated how RMTg MORs played a role in rewarding effects induced by social interaction behaviors of male Wistar rats, using a conditioned place preference (CPP) model. Results showed that the CPP induced by social interaction behaviors was inhibited when the function of MORs was blocked via injecting CTAP (a selective MOR antagonist) intraperitoneally, and intra-RMTg injections of lower doses of CTAP affected the CPP in the same way. In addition, injecting CTAP intraperitoneally significantly inhibited the expression of pouncing behavior, while intra-RMTg injections of CTAP significantly inhibited the expression of all three types of social behaviors. These results suggest that RMTg MORs may be a crucial target and remain to be further explored in order to better understand the mechanism of the rewarding effects of social interaction behaviors.


Assuntos
Analgésicos Opioides , Interação Social , Ratos , Masculino , Animais , Analgésicos Opioides/farmacologia , Ratos Wistar , Tegmento Mesencefálico , Receptores Opioides/metabolismo , Receptores Opioides mu/metabolismo , Peptídeos Opioides/metabolismo
7.
Biochem Pharmacol ; 209: 115417, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682388

RESUMO

Opioids are excellent analgesics for the clinical treatment of various types of acute and chronic pain, particularly cancer-related pain. Nevertheless, it is well known that opioids have some nasty side effects, including immunosuppression, which is commonly overlooked. As a result, the incidence of opportunistic bacterial and viral infections increases in patients with long-term opioid use. Nowadays, there are no effective medications to alleviate opioid-induced immunosuppression. Understanding the underlying molecular mechanism of opioids in immunosuppression can enable researchers to devise effective therapeutic interventions. This review comprehensively summarized the exogenous opioids-induced immunosuppressive effects and their underlying mechanisms, the regulatory roles of endogenous opioids on the immune system, the potential link between opioid immunosuppressive effect and the function of the central nervous system (CNS), and the future perspectives in this field.


Assuntos
Imunidade Adaptativa , Analgésicos Opioides , Sistema Nervoso Central , Tolerância Imunológica , Imunidade Inata , Peptídeos Opioides , Infecções Oportunistas , Analgésicos Opioides/efeitos adversos , Imunidade Inata/efeitos dos fármacos , Imunidade Adaptativa/efeitos dos fármacos , Humanos , Infecções Oportunistas/induzido quimicamente , Infecções Oportunistas/epidemiologia , Infecções Oportunistas/imunologia , Incidência , Sistema Imunitário , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Peptídeos Opioides/metabolismo
8.
Br J Pharmacol ; 180(8): 1148-1167, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36478100

RESUMO

BACKGROUND AND PURPOSE: Peripheral sensitization contributes to pathological pain. While prostaglandin E2 (PGE2) and nerve growth factor (NGF) sensitize peptidergic C-nociceptors (TRPV1+), glial cell line-derived neurotrophic factor (GDNF) sensitizes non-peptidergic C-neurons (IB4+). The sigma-1 receptor (sigma-1R) is a Ca2+ -sensing chaperone known to modulate opoid analgesia. This receptor binds both to TRPV1 and the µ opioid receptor, although the functional repercussions of these physical interactions in peripheral sensitization are unknown. EXPERIMENTAL APPROACH: We tested the effects of sigma-1 antagonism on PGE2-, NGF-, and GDNF-induced mechanical and heat hyperalgesia in mice. We used immunohistochemistry to determine the presence of endomorphin-2, an endogenous µ receptor agonist, on dorsal root ganglion (DRG) neurons. Recombinant proteins were used to study the interactions between sigma-1R, µ- receptor, and TRPV1. We used calcium imaging to study the effects of sigma-1 antagonism on PGE2-induced sensitization of TRPV1+ nociceptors. KEY RESULTS: Sigma1 antagonists reversed PGE2- and NGF-induced hyperalgesia but not GDNF-induced hyperalgesia. Endomorphin-2 was detected on TRPV1+ but not on IB4+ neurons. Peripheral opioid receptor antagonism by naloxone methiodide or administration of an anti-endomorphin-2 antibody to a sensitized paw reversed the antihyperalgesia induced by sigma-1 antagonists. Sigma-1 antagonism transfers sigma-1R from TRPV1 to µ receptors, suggesting that sigma-1R participate in TRPV1-µ receptor crosstalk. Moreover, sigma-1 antagonism reversed, in a naloxone-sensitive manner, PGE2-induced sensitization of DRG neurons to the calcium flux elicited by capsaicin, the prototypic TRPV1 agonist. CONCLUSION AND IMPLICATIONS: Sigma-1 antagonism harnesses endogenous opioids produced by TRPV1+ neurons to reduce hyperalgesia by increasing µ receptor activity.


Assuntos
Analgesia , Nociceptores , Camundongos , Animais , Nociceptores/metabolismo , Hiperalgesia/metabolismo , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacologia , Fator de Crescimento Neural/metabolismo , Cálcio/metabolismo , Dinoprostona/metabolismo , Dor/metabolismo , Peptídeos Opioides/metabolismo , Canais de Cátion TRPV/metabolismo , Gânglios Espinais/metabolismo
9.
Neuropharmacology ; 225: 109376, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516892

RESUMO

The opioid G-protein coupled receptors (GPCRs) strongly modulate many of the central nervous system structures that contribute to neurological and psychiatric disorders including pain, major depressive disorder, and substance use disorders. To better treat these and related diseases, it is essential to understand the signaling of their endogenous ligands. In this review, we focus on what is known and unknown about the regulation of the over two dozen endogenous peptides with high affinity for one or more of the opioid receptors. We briefly describe which peptides are produced, with a particular focus on the recently proposed possible synthesis pathways for the endomorphins. Next, we describe examples of endogenous opioid peptide expression organization in several neural circuits and how they appear to be released from specific neural compartments that vary across brain regions. We discuss current knowledge regarding the strength of neural activity required to drive endogenous opioid peptide release, clues about how far peptides diffuse from release sites, and their extracellular lifetime after release. Finally, as a translational example, we discuss the mechanisms of action of naltrexone (NTX), which is used clinically to treat alcohol use disorder. NTX is a synthetic morphine analog that non-specifically antagonizes the action of most endogenous opioid peptides developed in the 1960s and FDA approved in the 1980s. We review recent studies clarifying the precise endogenous activity that NTX prevents. Together, the works described here highlight the challenges and opportunities the complex opioid system presents as a therapeutic target.


Assuntos
Alcoolismo , Transtorno Depressivo Maior , Transtornos Relacionados ao Uso de Opioides , Humanos , Alcoolismo/tratamento farmacológico , Analgésicos Opioides/uso terapêutico , Antagonistas de Entorpecentes/uso terapêutico , Antagonistas de Entorpecentes/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Peptídeos Opioides/metabolismo , Naltrexona/farmacologia , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico
10.
Neuropsychopharmacology ; 48(6): 908-919, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36329156

RESUMO

Recent studies indicate that stimulation of the rostromedial tegmental nucleus (RMTg) can drive a negative affective state and that nociceptin/orphanin FQ (N/OFQ) may play a role in affective disorders and drug addiction. The N/OFQ precursor prepronociceptin encoding genes Pnoc are situated in RMTg neurons. To determine whether N/OFQ signaling contributes to the changes in both behavior phenotypes and RMTg activity of alcohol withdrawn (Post-EtOH) rats, we trained adult male Long-Evans rats, randomly assigned into the ethanol and Naïve groups to consume either 20% ethanol or water-only under an intermittent-access procedure. Using the fluorescence in situ hybridization technique combined with retrograde tracing, we show that the ventral tegmental area projecting RMTg neurons express Pnoc and nociceptin opioid peptide (NOP) receptors encoding gene Oprl1. Also, using the laser capture microdissection technique combined with RT-qPCR, we detected a substantial decrease in Pnoc but an increase in Oprl1 mRNA levels in the RMTg of Post-EtOH rats. Moreover, RMTg cFos expression is increased in Post-EtOH rats, which display anxiety- and depression-like behaviors. Intra-RMTg infusion of the endogenous NOP agonist nociceptin attenuates the aversive behaviors in Post-EtOH rats without causing any notable change in Naïve rats. Conversely, intra-RMTg infusion of the NOP selective antagonist [Nphe1]nociceptin(1-13)NH2 elicits anxiety- and depression-like behaviors in Naïve but not Post-EtOH rats. Furthermore, intra-RMTg infusion of nociceptin significantly reduces alcohol consumption. Thus, our results show that the deficiency of RMTg NOP signaling during alcohol withdrawal mediates anxiety- and depression-like behaviors. The intervention of NOP may help those individuals suffering from alcohol use disorders.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Ratos , Masculino , Animais , Receptores Opioides/metabolismo , Depressão , Hibridização in Situ Fluorescente , Ratos Long-Evans , Peptídeos Opioides/metabolismo , Ansiedade/metabolismo , Etanol , Receptor de Nociceptina
11.
Biochemistry (Mosc) ; 88(12): 2137-2145, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38462456

RESUMO

The neuropeptide nocistatin (NS) is expressed by the nervous system cells and neutrophils as a part of a precursor protein and can undergo stepwise limited proteolysis. Previously, it was shown that rat NS (rNS) is able to activate acid-sensing ion channels (ASICs) and that this effect correlates with the acidic nature of NS. Here, we investigated changes in the properties of rNS in the course of its proteolytic degradation by comparing the effects of the full-size rNS and its two cleavage fragments on the rat isoform 3 ASICs (ASIC3) expressed in X. laevis oocytes and pain perception in mice. The rNS acted as both positive and negative modulator by lowering the steady-state desensitization of ASIC3 at pH 6.8-7.0 and reducing the channel's response to stimuli at pH 6.0-6.9, respectively. The truncated rNSΔ21 peptide lacking 21 amino acid residues from the N-terminus retained the positive modulatory activity, while the C-terminal pentapeptide (rNSΔ30) acted only as a negative ASIC3 modulator. The effects of the studied peptides were confirmed in animal tests: rNS and rNSΔ21 induced a pain-related behavior, whereas rNSΔ30 showed the analgesic effect. Therefore, we have shown that the mode of rNS action changes during its stepwise degradation, from an algesic molecule through a pain enhancer to a pain reliever (rNSΔ30 pentapeptide), which can be considered as a promising drug candidate.


Assuntos
Canais Iônicos Sensíveis a Ácido , Peptídeos Opioides , Ratos , Camundongos , Animais , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Proteólise , Peptídeos Opioides/metabolismo , Dor , Analgésicos/farmacologia , Concentração de Íons de Hidrogênio
12.
J Physiol ; 600(22): 4939-4961, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36217719

RESUMO

We tested the hypothesis that N/OFQ neurones in the arcuate nucleus (N/OFQARC ) inhibit proopiomelanocortin (POMCARC ) neurones in a diet- and hormone-dependent manner to promote a more extensive rebound hyperphagia upon re-feeding following an 18 h fast. We utilized intact male or ovariectomized (OVX) female mice subjected to ad libitum-feeding or fasting conditions. N/OFQARC neurones under negative energy balance conditions displayed heightened sensitivity as evidenced by a decreased rheobase threshold, increased firing frequency, and increased burst duration and frequency compared to ad libitum-feeding conditions. Stimulation of N/OFQARC neurones more robustly inhibited POMCARC neurones under fasting conditions compared to ad libitum-feeding conditions. N/OFQARC inhibition of POMCARC neurones is hormone dependent as chemostimulation of N/OFQARC neurones from fasted males and OVX females produced a sizable outward current in POMCARC neurones. Oestradiol (E2 ) markedly attenuated the N/OFQ-induced POMCARC outward current. Additionally, N/OFQ tonically inhibits POMCARC neurones to a greater degree under fasting conditions than in ad libitum-feeding conditions as evidenced by the abrogation of N/OFQ-nociceptin opioid peptide (NOP) receptor signalling and inhibition of N/OFQ release via chemoinhibition of N/OFQARC neurones. Intra-arcuate nucleus application of N/OFQ further elevated the hyperphagic response and increased meal size during the 6 h re-feed period, and these effects were mimicked by chemostimulation of N/OFQARC neurones in vivo. E2 attenuated the robust N/OFQ-induced rebound hyperphagia seen in vehicle-treated OVX females. These data demonstrate that N/OFQARC neurones play a vital role in mitigating the impact of negative energy balance by inhibiting the excitability of anorexigenic neural substrates, an effect that is diminished by E2 in females. KEY POINTS: Nociceptin/orphanin FQ (N/OFQ) promotes increased energy intake and decreased energy expenditure under conditions of positive energy balance in a sex- and hormone-dependent manner. Here it is shown that under conditions of negative energy balance, i.e. fasting, N/OFQ inhibits anorexigenic proopiomelanocortin (POMC) neurones to a greater degree compared to homeostatic conditions due to fasting-induced hyperexcitability of N/OFQ neurones. Additionally, N/OFQ promotes a sustained increase in rebound hyperphagia and increase in meal size during the re-feed period following a fast. These results promote greater understanding of how energy balance influences the anorexigenic circuitry of the hypothalamus, and aid in understanding the neurophysiological pathways implicated in eating disorders promoting cachexia.


Assuntos
Estradiol , Pró-Opiomelanocortina , Masculino , Feminino , Camundongos , Animais , Pró-Opiomelanocortina/metabolismo , Estradiol/farmacologia , Peptídeos Opioides/farmacologia , Peptídeos Opioides/metabolismo , Metabolismo Energético , Hiperfagia
13.
Eur J Pharmacol ; 929: 175139, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35809655

RESUMO

Nociceptin/orphanin FQ (N/OFQ) and adrenergic activations play roles in promoting cardiac arrhythmia in acute myocardial ischemia but whether N/OFQ and ß1-adrenergic activities interact and how they interact in the arrhythmogenesis are still unknown. We designed this study to investigate the potential interaction of N/OFQ and ß1-adrenergic activities and the underlying mechanism in arrhythmogenesis in acute myocardial ischemia. Ventricular arrhythmia was evaluated in anaesthetized rats following permanent coronary artery occlusion (CAO), in presence and absence of UFP-101 (a selective antagonist of N/OFQ receptor). The changes of ß1-adrenergic receptor (ß1-AR) in plasma membrane of cardiomyocytes were quantitatively evaluated and the relations with the alterations of phosphorylated Raf kinase inhibitor protein (p-RKIP) and phosphorylated connexin 43 (p-Cx43) were investigated. The ventricular arrhythmia was 59% less in the animals pre-treated with UFP-101 than the placebo-treated control (difference of means = -2.41; 95% confidence interval (CI) -2.84 to -1.99; P < 0.001). Meanwhile, p-RKIP and membrane ß1-AR in the myocardium were downregulated by 59% and 24%, respectively (p-RKIP: difference of means = -6.91; 95% CI -8.38 to -5.45; P < 0.001; membrane ß1-AR difference of means = -27.06; 95% CI -29.89 to -24.23; P < 0.001). Artificial upregulation of RKIP by didymin significant increased ß1-AR in plasma membrane of the cardiomyocytes in the animals prone to ventricular arrhythmia. The findings may suggest that activation of N/OFQ receptor in acute myocardial ischemia induces upregulation of p-RKIP, externalization of ß1-adrenergic receptor and downregulation of p-Cx43 in the cardiomyocytes, which promotes ventricular arrhythmia.


Assuntos
Isquemia Miocárdica , Receptores Opioides , Adrenérgicos , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Conexina 43 , Isquemia Miocárdica/complicações , Isquemia Miocárdica/tratamento farmacológico , Peptídeos Opioides/metabolismo , Ratos , Receptores Adrenérgicos , Receptores Opioides/metabolismo
14.
J Neuroinflammation ; 19(1): 148, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705992

RESUMO

BACKGROUND: Under inflammatory conditions, the activation of corticotropin-releasing factor (CRF) receptor has been shown to inhibit pain through opioid peptide release from immune cells or neurons. CRF's effects on human and animal pain modulation depend, however, on the distribution of its receptor subtypes 1 and 2 (CRF-R1 and CRF-R2) along the neuraxis of pain transmission. The objective of this study is to investigate the respective role of each CRF receptor subtype on centrally administered CRF-induced antinociception during inflammatory pain. METHODS: The present study investigated the role of intracerebroventricular (i.c.v.) CRF receptor agonists on nociception and the contribution of cerebral CRF-R1 and/or CRF-R2 subtypes in an animal model of Freund's complete adjuvant (FCA)-induced hind paw inflammation. Methods used included behavioral experiments, immunofluorescence confocal analysis, and reverse transcriptase-polymerase chain reaction. RESULTS: Intracerebroventricular, but systemically inactive, doses of CRF elicited potent, dose-dependent antinociceptive effects in inflammatory pain which were significantly antagonized by i.c.v. CRF-R1-selective antagonist NBI 27914 (by approximately 60%) but less by CRF-R2-selective antagonist K41498 (by only 20%). In line with these findings, i.c.v. administration of CRF-R1 agonist stressin I produced superior control of inflammatory pain over CRF-R2 agonist urocortin-2. Intriguingly, i.c.v. opioid antagonist naloxone significantly reversed the CRF as well as CRF-R1 agonist-elicited pain inhibition. Consistent with existing evidence of high CRF concentrations in brain areas such as the thalamus, hypothalamus, locus coeruleus, and periaqueductal gray following its i.c.v. administration, double-immunofluorescence confocal microscopy demonstrated primarily CRF-R1-positive neurons that expressed opioid peptides in these pain-relevant brain areas. Finally, PCR analysis confirmed the predominant expression of the CRF-R1 over CRF-R2 in representative brain areas such as the hypothalamus. CONCLUSION: Taken together, these findings suggest that CRF-R1 in opioid-peptide-containing brain areas plays an important role in the modulation of inflammatory pain and may be a useful therapeutic target for inflammatory pain control.


Assuntos
Hormônio Liberador da Corticotropina , Receptores de Hormônio Liberador da Corticotropina , Animais , Encéfalo/metabolismo , Peptídeos Opioides/metabolismo , Dor/tratamento farmacológico
15.
Neuropharmacology ; 212: 109077, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35513173

RESUMO

Nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand of an inhibitory G protein coupled receptor named N/OFQ peptide receptor (NOP). Clinical and preclinical findings suggest that the blockade of the NOP signaling induces antidepressant-like effects. Additionally, the blockade of the NOP receptor during inescapable stress exposure prevented the acquisition of the helplessness phenotype, suggesting that NOP antagonists are able to increase stress resilience. BTRX-246040 (aka LY2940094) is a NOP receptor antagonist with high affinity, potency and selectivity for the NOP over classical opioid receptors. BTRX-246040 is under development for the treatment of depression, eating disorders and alcohol abuse and it already entered clinical trials. In the present study, the antidepressant effects of BTRX-246040 were evaluated in mice subjected to the forced swimming test and to the learned helplessness model of depression. Additionally, the ability of BTRX-246040 to prevent the development of the helpless behavior and to modulate adult hippocampal neurogenesis has been investigated. BTRX-246040 (30 mg/kg, i.p.) produced antidepressant-like effects in the forced swimming test and in the learned helplessness model. More interestingly, when given before the stress induction sessions it was able to prevent the development of the helplessness behavior. Under these experimental conditions, BTRX-246040 did not modulate adult hippocampal neurogenesis, neither in naive nor in stressed mice. This study, performed with a clinically viable ligand, further corroborates growing evidence indicating that the blockade of the NOP signaling may provide an innovative strategy for the treatment of stress related psychopathologies.


Assuntos
Peptídeos Opioides , Receptores Opioides , Animais , Antidepressivos/farmacologia , Hipocampo/metabolismo , Ligantes , Camundongos , Neurogênese , Peptídeos Opioides/metabolismo , Receptores Opioides/metabolismo
16.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409178

RESUMO

Opioids are considered the oldest drugs known by humans and have been used for sedation and pain relief for several centuries. Nowadays, endogenous opioid peptides are divided into four families: enkephalins, dynorphins, endorphins, and nociceptin/orphanin FQ. They exert their action through the opioid receptors (ORs), transmembrane proteins belonging to the super-family of G-protein-coupled receptors, and are expressed throughout the body; the receptors are the δ opioid receptor (DOR), µ opioid receptor (MOR), κ opioid receptor (KOR), and nociceptin/orphanin FQ receptor (NOP). Endogenous opioids are mainly studied in the central nervous system (CNS), but their role has been investigated in other organs, both in physiological and in pathological conditions. Here, we revise their role in stem cell (SC) biology, since these cells are a subject of great scientific interest due to their peculiar features and their involvement in cell-based therapies in regenerative medicine. In particular, we focus on endogenous opioids' ability to modulate SC proliferation, stress response (to oxidative stress, starvation, or damage following ischemia-reperfusion), and differentiation towards different lineages, such as neurogenesis, vasculogenesis, and cardiogenesis.


Assuntos
Analgésicos Opioides , Peptídeos Opioides , Analgésicos Opioides/metabolismo , Humanos , Peptídeos Opioides/metabolismo , Receptores Opioides/metabolismo , Receptores Opioides kappa/metabolismo , Células-Tronco/metabolismo
17.
Science ; 375(6585): 1177-1182, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35201898

RESUMO

Angiotensin-converting enzyme (ACE) regulates blood pressure by cleaving angiotensin I to produce angiotensin II. In the brain, ACE is especially abundant in striatal tissue, but the function of ACE in striatal circuits remains poorly understood. We found that ACE degrades an unconventional enkephalin heptapeptide, Met-enkephalin-Arg-Phe, in the nucleus accumbens of mice. ACE inhibition enhanced µ-opioid receptor activation by Met-enkephalin-Arg-Phe, causing a cell type-specific long-term depression of glutamate release onto medium spiny projection neurons expressing the Drd1 dopamine receptor. Systemic ACE inhibition was not intrinsically rewarding, but it led to a decrease in conditioned place preference caused by fentanyl administration and an enhancement of reciprocal social interaction. Our results raise the enticing prospect that central ACE inhibition can boost endogenous opioid signaling for clinical benefit while mitigating the risk of addiction.


Assuntos
Encefalina Metionina/análogos & derivados , Plasticidade Neuronal , Núcleo Accumbens/metabolismo , Peptidil Dipeptidase A/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Captopril/farmacologia , Encefalina Metionina/metabolismo , Feminino , Fentanila/farmacologia , Masculino , Camundongos , Potenciais Pós-Sinápticos em Miniatura , Peptídeos Opioides/metabolismo , Técnicas de Patch-Clamp
18.
Mol Psychiatry ; 27(2): 831-839, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716408

RESUMO

Behavioral conditioning and expectation can have profound impact on animal and human physiology. Placebo, administered under positive expectation in clinical trials, can have potent effects on disease pathology, obscuring active medications. Emerging evidence suggests placebo-responsive neurotransmitter systems (e.g., endogenous opioid) regulate immune function by manipulating inflammatory proteins including IL-18, a potent pro-inflammatory, nociceptive cytokine implicated in pathophysiology of various diseases. Validation that neuroimmune interactions involving brain µ-opioid receptor (MOR) activity and plasma IL-18 underlie placebo analgesic expectation could have widespread clinical applications. Unfortunately, current lack of mechanistic clarity obfuscates clinical translation. To elucidate neuroimmune interactions underlying placebo analgesia, we exposed 37 healthy human volunteers to a standardized pain challenge on each of 2 days within a Positron Emission Tomography (PET) neuroimaging paradigm using the MOR selective radiotracer, 11C-Carfentanil (CFN). Each day volunteers received an intervention (placebo under analgesic expectation or no treatment), completed PET scanning, and rated their pain experience. MOR BPND parametric maps were generated from PET scans using standard methods. Results showed placebo reduced plasma IL-18 during pain (W74 = -3.7, p < 0.001), the extent correlating with reduction in pain scores. Placebo reduction in IL-18 covaried with placebo-induced endogenous opioid release in the left nucleus accumbens (T148 = 3.33; puncorr < 0.001) and left amygdala (T148 = 3.30; puncorr < 0.001). These findings are consistent with a modulating effect of placebo (under analgesic expectation in humans) on a potent nociceptive, pro-inflammatory cytokine (IL-18) and underlying relationships with endogenous opioid activity, a neurotransmitter system critically involved in pain, stress, and mood regulation.


Assuntos
Analgésicos Opioides , Receptores Opioides mu , Analgésicos , Analgésicos Opioides/metabolismo , Encéfalo/metabolismo , Humanos , Interleucina-18/metabolismo , Neurotransmissores/metabolismo , Peptídeos Opioides/metabolismo , Dor/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores Opioides mu/metabolismo , Transmissão Sináptica/fisiologia
19.
Br J Pharmacol ; 179(11): 2647-2658, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34854073

RESUMO

BACKGROUND AND PURPOSE: The nociceptin/orphanin FQ (N/OFQ)-nociceptin opioid-like peptide (NOP) receptor system is widely distributed in the brain and pharmacological activation of this system revealed therapeutic potential in animal models of substance use disorder. Studies also showed that genetic deletion or pharmacological blockade of NOP receptors confer resistance to the development of alcohol abuse. Here, we have used a genetic and pharmacological approach to evaluate the therapeutic potential of NOP antagonism in smoking cessation. EXPERIMENTAL APPROACH: Constitutive NOP receptor knockout rats (NOP-/- ) and their wild-type counterparts (NOP+/+ ) were tested over a range of behaviours to characterize their motivation for nicotine. We next explored the effects of systemic administration of the NOP receptor antagonist LY2817412 (1.0 & 3.0 mg·kg-1 ) on nicotine self-administration. NOP receptor blockade was further evaluated at the brain circuitry level, by microinjecting LY2817412 (3.0 & 6.0 µg·µl-1 ) into the ventral tegmental area (VTA), nucleus accumbens (NAc) and central amygdala (CeA). KEY RESULTS: Genetic NOP receptor deletion resulted in decreased nicotine intake, decreased motivation to self-administer and attenuation of cue-induced nicotine reinstatement. LY2817412 reduced nicotine intake in NOP+/+ but not in NOP-/- rats, confirming that its effect is mediated by inhibition of NOP transmission. Finally, injection of LY2817412 into the VTA but not into the NAc or CeA decreased nicotine self-administration. CONCLUSIONS AND IMPLICATIONS: These findings indicate that inhibition of NOP transmission attenuates the motivation for nicotine through mechanisms involving the VTA and suggest that NOP receptor antagonism may represent a potential treatment for smoking cessation.


Assuntos
Nicotina , Área Tegmentar Ventral , Animais , Nicotina/farmacologia , Peptídeos Opioides/metabolismo , Ratos , Receptores Opioides , Área Tegmentar Ventral/metabolismo , Receptor de Nociceptina
20.
Pharmacol Ther ; 231: 107982, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480968

RESUMO

The nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor is a member of the opioid receptor superfamily with N/OFQ as its endogenous agonist. Wide expression of the NOP receptor and N/OFQ, both centrally and peripherally, and their ability to modulate several biological functions has led to development of NOP receptor modulators by pharmaceutical companies as therapeutics, based upon their efficacy in preclinical models of pain, anxiety, depression, Parkinson's disease, and substance abuse. Both posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) are debilitating conditions that significantly affect the quality of life of millions of people around the world. PTSD is often a consequence of TBI, and, especially for those deployed to, working and/or living in a war zone or are first responders, they are comorbid. PTSD and TBI share common symptoms, and negatively influence outcomes as comorbidities of the other. Unfortunately, a lack of effective therapies or therapeutic agents limits the long term quality of life for either TBI or PTSD patients. Ours, and other groups, demonstrated that PTSD and TBI preclinical models elicit changes in the N/OFQ-NOP receptor system, and that administration of NOP receptor ligands alleviated some of the neurobiological and behavioral changes induced by brain injury and/or traumatic stress exposure. Here we review the past and most recent progress on understanding the role of the N/OFQ-NOP receptor system in PTSD and TBI neurological and behavioral sequelae. There is still more to understand about this neuropeptide system in both PTSD and TBI, but current findings warrant further examination of the potential utility of NOP modulators as therapeutics for these disorders and their co-morbidities. We advocate the development of standards for common data elements (CDE) reporting for preclinical PTSD studies, similar to current preclinical TBI CDEs. That would provide for more standardized data collection and reporting to improve reproducibility, interpretation and data sharing across studies.


Assuntos
Lesões Encefálicas Traumáticas , Qualidade de Vida , Lesões Encefálicas Traumáticas/tratamento farmacológico , Humanos , Morbidade , Peptídeos Opioides/metabolismo , Peptídeos Opioides/uso terapêutico , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...